
The rigidly rotating relativistic dust cylinder

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 2121

(http://iopscience.iop.org/0305-4470/13/6/033)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 17:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 2121-2132. Printed in Great Britain 

The rigidly rotating relativistic dust cylinder 

W B Bonnor 
Department of Mathematics, Queen.Elizabeth College, University of London, London W8 
7AH. UK 
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Abstract. The solution of van Stockum consists of a rotating dust interior, and three exterior 
metrics referring to different ranges of the mass per unit length. It has been stated in the 
literature that the exterior is static, but it is proved here that this is so only in the low-mass 
case. An examination of the Riemann tensor shows that van Stockum’s spacetime is free 
from singularities and matter at radial infinity below a certain value of the mass per unit 
length. The ultrarelativistic case, which has closed timelike lirres, can occur at physically 
possible densities and radii. 

I. Introduction 

In a fine paper, well ahead of its time, van Stockum (1937) completely solved the 
problem of a rigidly rotating infinitely long cylinder of dust, including the application of 
adequate boundary conditions. The solution is a remarkable one. The metric for the 
interior is simple and unique, depending on one parameter a ;  but for the vacuum 
exterior there are three cases, depending on the mass per unit length of the interior. We 
call these cases the low-mass, null and ultrarelativistic cases, and they will be numbered 
I, 11, 111. Of course they satisfy Einstein’s vacuum equations and are stationary, i.e. 
independent of the time coordinate. 

It was stated by Frehland (1971) that the exterior metric is static in that it can be 
diagonalised without introducing the time. This is incorrect: the low-mass case can be 
diagonalised, but the other two cannot. I prove this here by showing that a hypersur- 
face-orthogonal (HSO) timelike Killing vector exists in case I, but not in cases I1 or 111. 
The diagonalised form turns out, as expected, to be the Levi Civita metric for a static 
infinite line-mass. The diagonalisation of case I has also been achieved by Som et a1 
(1976). 

Even in case I the diagonalisation can be accomplished only by the introduction of a 
periodic time coordinate, as has been noticed by Tipler (1974a). I shall argue that this 
spacetime should not be called globally static. 

In the ultrarelativistic case the exterior spacetime contains closed timelike lines, and 
therefore seems to violate causality. The possibility that general relativity permits the 
existence of time machines (the construction of time machines, except in special 
circumstances, appears to have been ruled out by work of Tipler (1974b)) has been 
considered by a number of authors recently (Calvani 1978, Charlton 1978, Reboucas 
1979). Closed timelike lines have long been known to exist in the Godel and Kerr 
metrics, but the physical nature of the sources of these spacetimes is obscure. On the 
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other hand, the source of the van Stockum spacetime consists solely of physically 
reasonable matter, namely dust. 

This latter point seemed to me of sufficient importance to merit a careful check. 
Although it was previously believed (see e.g. Vishveshwara and Winicour 1977) that 
the van Stockum spacetime arises from nothing but a cylinder of rotating dust, this is not 
obvious from an inspection of the metrics. I therefore undertake here a study of the 
Riemann tensor which confirms the non-singular character of the spacetimes, provided 
the top end of case I11 is excluded (provided aR  s 1 : see § 7) .  I also show that the mass 
per unit length of cylinder at which the ultrarelativistic regime occurs is by no means 
impossibly high. 

The plan of the paper is as follows. In 8 8  2 and 3 the van Stockum solution and some 
of its properties are given. Section 4 contains the proof of the theorem about the 
existence of HSO Killing vectors, and in §§ 5 and 6 are given the simplified forms of the 
exterior metrics in cases I and I1 when the coordinates are adapted to these vectors. In 
8 7 (and the Appendix) the Riemann tensor is considered, and it is concluded that, 
provided aR  < 1, spacetime is globally regular and free of sources at radial infinity. 
Mass and angular momentum are considered in § 8, and there is a discussion and 
conclusion in § 9. The main new work is in 8 3  4, 6, 7 and 8. 

2. The solutions 

We use the solutions of van Stockum in his notation, with a few unimportant changes. 
The metric is 

d s2=-H(dz2fd r2 ) -Ld4’ -2M d 4  d t + F d t 2 ,  (2.1) 

where H, L, M and F are functions of r only, and the ranges of the coordinates z ,  qb and t 
are 

---CO < 2 < 00, 0sqbs27r ,  --CO< t <-CO, (2.2) 

the hypersurfaces 4 = 0 and 4 = 27r being identified. The coordinates will be 
numbered 

X L 2 ,  x2=r ,  x3+, x4=t.  (2.3) 

O s r < R  (2.4) 

The solution has an interior 

composed of rotating dust, and a vacuum exterior 

R < r  (2.5) 
which has three cases according to the magnitude of the mass per unit length (see § 8). 
The detailed solutions are as follows. 

Interior, 0 s r C R 

7 L = r2(1 - a 2 r 2 ) ,  M = ar2, F =  1, (2.6) H = e-a2r2 

where a is an arbitrary positive constant; the density and four-velocity of the dust are 
given by 

(2.7) 2 aZr2 8 ~ p = 4 a  e , U ’  = st. 
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Exterior, R s r 
Case I, aR <4 

L = trR s i n h ( 3 ~  + 0) cosech 2~ sech E ,  
2a2R2  ( W r )  , H = e -a2Kz  

M = r sinh(6 + e) cosech 26, 
(2.8) 

F = rR-l sinh(E - 0)  cosech E ,  

(2.9) 

2 2 1 / 2  where 0 = (1 -4a2R2)1/2 log(r/R), tanh E = (1 -4a R ) 
Case 11, aR = $ 

. 

H = e-1/4 ( R / P 2 ,  L = irR[3 +log(r/R)], 

M =$[1 +log(r/R)], F = rR-’[l -log(r/R)]. 

Case 111, aR >$ 

(R/r)2a2Rz, L = frR s i n ( 3 ~  + 0)  cosec 2~ sec E ,  

F = rR-l sin(€ - 0) cosec E ,  

H = e-a2R2 

(2.10) 
M = r sin(€ + 0)  cosec 2 ~ ,  

where B = (4a2R2-  1)l” log(r/R), tan E = (4a2R2-  1)”2(0< E <&). 
The positive square roots are to be taken in all cases. Cases I and I11 are of Petrov 

type I, and case I1 is of Petrov type I1 (Hoffman 1969). Since in all cases L F  + M 2  = r2, 
the determinant of g j k  is -r2H2, which is non-positive. Hence the metrics have the 
correct signature for a spacetime. 

In the three exterior metrics, L,  M and F satisfy a linear relation. In case I this is 

L cosh’ E - R M  cosh 2.5 cosh E - aR2F  = 0, 

and the corresponding relations in the other cases are obtained by replacing E by ie (case 
111) and by zero (case 11). 

On the boundary r = R the interior and exterior metric coefficients are all continu- 
ous, and so are their first derivatives. They therefore satisfy the standard boundary 
conditions of general relativity. 

Singularities will be discussed in § 7 .  However, we may note here that, if space is to 
be Euclidean in the neighbourhood of r =0 ,  it is necessary that the ratio of the 
circumference to the radius of a small circle centred on the axis and in a plane 
z = constant be 27r. This is so only if the range of 6, is as given in (2.2). Since the ranges 
of the coordinates 2, 4, t must be the same on both sides of the boundary r = R, the 
range of 6, in the exterior is also [0,27r]. 

3. Some properties of the solutions 

The metrics of 8 2 have three and only three linearly independent Killing vectors 

2’ = si, @i = si, T‘ = Si ,  (3.1) 

Y’ = ( z ,  r, -tR-’, R6, - t). 

unless a R  = 1 in exterior case 111, when there exists an extra Killing vector 

(3.2) 

The dust in r s R is rigidly rotating, i.e. its shear vanishes. Its angular velocity 
1 

Wik  = d U i ; k  - U k : i )  
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has for its only non-zero componelsts 

~ 2 3  = -032 = ar, 

and the vorticity vector w' given by 
1 iklm w ' " ? q  U k a l m  

has the single component 
w 1 =  - & - I  

and magnitude Iw 'w, 1 1 "  equal to aH-l". We note that the vorticity scalar depends on r, 
even though the dust is rotating rigidly. 

At a point distant rl from the axis we can make the purely local coordinate 
transformation to the locally non-rotating frame (LNRF) (Bardeen 1970) 

- a 
d4=d4++ddt ,  d t =  dt, dP = dr, dT = dz. 

1 - a  r l  

In this frame the metric has diagonal form near r l .  Since the LNRF has angular velocity 
- a ( l  - a  r l )  with respect to the co-moving frame of 2, r, 4, t, the angular velocity of 
the fluid with respect to the LNRFis w = a ( l  -a'r?)-'. As rl - 0, w + a, so we can take a 
as the angular velocity on the axis. A similar result was obtained by van Stockum by a 
different method. 

The parameter a is the only one occurring in the interior solution, and both the mass 
m and the angular momentum j are determined in terms of it and the radius R. m and j 
will be calculated in 5 8. 

2 2 -1  

4. Existence of timelike hypersurface-orthogonal Killing vectors 

The existence of a timelike hypersurface-orthogonal (IISO) Killing vector implies that 
the metric is static, i.e. that there exists a coordinate system in which the g ik  are 
independent of t, and g,, = O(a = 1, 2, 3 )  (Trautman 1965). Such a coordinate system 
may not be globally satisfactory: we discuss this in 5 5 .  

Theorem. The timelike and null HSO Killing vectors contained in the van Stockum 
metrics are as follows: 

Interior ( r  < R ) :  none. 
Exterior ( r  > R )  Case I: one timelike; 

Case 11: one null; 
Case 111: none. 

Proof. The most general Killing vector can be written (sce 5 3) 

XI = p s i  t-qs; -t $6: + W Y ' ,  (4.1) 
where p ,  q, s and w are real constants, and M? is zero unless aR = 1 in exterior case 111. A 
necessary condition for this to be HSO is that 

X[r,iXkI = 0, (4.2) 
where the comma means partial differentiation and square brackets mean antisym- 
metrisation. Taking i, j ,  k respectively equal to 1 , 2 , 3  we at once find w = 0 in all cases. 
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Comparing i,j,k = 1,2,3 and i,j,k = 1,2,4 we find that either p = 0 or 

H' qL'+sM' - qM'-sF' 
H qL+sM q M - s F '  
-= - 

where the prime means d/dr, which can be satisfied only if q = s = 0. In the latter case 
(4.1) reduces to X I  = p a ; ,  which is orthogonal to the hypersurfaces z = constant, but 
spacelike and so of no interest to us here. We therefore take 

p = 0. (4.3) 

q2(LM'-  L ' M )  +qs(L'F - LF') + s'(FM'-MF') = 0. 

Putting i,j,k = 2,3,4 in (4.2) gives us 

(4.4) 

Since LM' - L'M # 0, s = 0 ,  q # 0 does not lead to an HSO Killing vector, and we may 
write (4.4) as 

x2(LM'-  L ' M )  +x(L'F - LF') t (FM'-MF') = 0,  

g , k X ' X k  = s'(F - 2xM - x'L). 

(4.5) 

where x = q/s. The square of the magnitude of the Killing vector (4.1) (with p = 0) is 

(4.6) 

There exist HSO Killing vectors with p = 0 only if the roots of (4.5) are real and 
independent of r ;  and they are timelike, null or spacelike according to whether (4.6) is 
positive, zero or negative. We examine the four cases. 

Interior. (4.5) becomes 
3 4  2 a r x + ( 1 - 2 a 2 r 2 ) x + a  =o ,  

both roots of which depend on r :  hence there are no HSO Killing vectors in this case. 
Exterior case I. From (4.5) we obtain 

inrR-' cosech 2~ sech E ( R ' X ~ + ~ R X  cosh 2r cosh E + 4  cosh' E )  = 0, 

where we have put 
2 2 1 / 2  2n = ( 1 - 4 a  R ) (4.7) 

in (2.8), so in this case there exist real roots, independent of r, namely 

x = -2R-' cosh E e*". 

xi = sl(-2R-'  cosh E e2'S; + Si), 

(4.8) 

(4.9) 
(4.10) 

The corresponding Killing vectors, obtained from (4.1), (4.3) and x = q / s ,  are 

xi = s2(-2R-' cosh E e-"S; + Si) ,  

where s l ,  s2 are arbitrary constants. Their covariant forms are 

,yl1 = slr e0+'(e2'Cj~ +2R-'  cosh E S f ) ,  

x Z l  = s2r e-s-'(e-2'61 + 2R-' cosh E a:), 
(4.11) 

(4.12) 

which shows that they are orthogonal to the hypersurfaces 

f l ( x a ) = e Z f ~ + 2 t R - '  coshe =0 ,  

f2(x a ) = eP2'q5 + 2 t R  -' cosh E = 0 

(4.13) 

(4.14) 
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respectively. Taking the scalar products of (4.9) with (4.11) and (4.10) with (4.12) we 
find that xi and xi! are spacelike and timelike respectively. Hence in exterior case I 
there is one timelike HSO Killing vector. 

Exterior case 11. Equation (4.5) has two coincident roots 

x = -2R-'. 

The corresponding single HSO Killing vector is 

x i  = ~ ( - 2 R - ' 6 :  + 8 : )  

which is null and orthogonal to the hypersurface 

f ( x " ) = & + t = O .  

Exterior case 111. Equation (4.5) becomes 

$n'rR-' cosec 2.5 sec E ( R ' x ' + ~ R x  cos 2~ cos E +4  cos2 E )  = 0, 

where 

2n'= + ( 4 a 2 R 2 - 1 ) 1 / 2  

in (2.10), which has complex roots. Hence the only HSO Killing vector in this case is 
x i  = p a l ,  which is spacelike. QED 

5. Static form of the metric in exterior case I 

It was proved by Frehland (1971) and by Som eta1 (1976) that the van Stockum metric 
can be transformed to static form in exterior case I. The Theorem of the previous 
section proves also that this cannot be done in the other cases. This is a remarkable 
result, showing that the transformation is possible only if the mass-energy per unit value 
of z is less than a certain value. 

We can obtain the static form of exterior case I by transforming C#J and t to 
coordinates adapted to the HSO Killing vectors. Put 

2n +l 
4a (5.1) 

where n is given by (4.7), and substitute into (2.1) with H, L, M, F given by (2.8). The 
result, obtained after a long calculation, is 

(5.2) ds 2 = - e - - a 2 R 2 ~ 2 a 2 R 2  r 2n2-1/2 (dz2+dr2)-r '+2fl  d42+r1-2fl d?. 

Substituting 

2 C = 1 - 2 n  (5.3) 
we obtain 

ds2 = -A2r2C2-2C (dz2 + d r 2 )  - r2--2c d4'  - rZc  d?, (5.4) 

A2 being written in the place of the constant e-a2R2R2a2Rz . This is the metric for a static 
line-mass in Weyl coordinates. It was originally obtained by Levi Civita, and was 
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investigated in detail by Marder (1958). C is related to the mass per unit length, but not 
exactly equal to it; we shall return to this point in 9 8. 

It should be noted that, although the exterior can be brought to the static form (5.4), 
the transformation (5.1) achieves this by introducing a periodic time coordinate (Tipler 
1974a). To save writing, let us express (5.1) in the form 

6 = K i 4  + Kzt, F =  K34 + K4t; ( 5 . 5 )  

then, since in the original coordinates we identified 

( t ,  4 )  = (t ,  4 + 2.rr), 
we must in the new ones make the identification 

(< 6) = (;+ 2?rK3, 6 + 2 r K J .  (5.6) 

In the new coordinates there is no smooth match to the interior solution (2.6). 
For a spacetime to be globally static it is reasonable to demand the existence of a 

time coordinate (i) whose level surfaces are orthogonal to a timelike Killing vector, and 
(ii) which is a monotonically increasing function on future-pointing causal curves. In 
exterior solution (2.8) there exists a time coordinate (namely r) satisfying (i), but it does 
not satisfy (ii). I shall therefore call the solution locally, but not globally, static. 

One can verify that the metric of exterior case I11 (aR > 4) cannot be diagonalised by 
a real transformation of the form ( 5 . 5 ) .  

6. Null form of the metric in exterior case I1 

In this case the metric has a null HSO Killing vector, but no timelike one. A linear 
transformation of 4 and t, namely 

- 3 -  4 =i$+iR-’C t = - iR4  + z t ,  

takes the metric into 

d s 2 =  - e - 1 / 4 ( R / r ) 1 ’ 2 ( d z 2 + d r 2 ) - r  d$ d t - ( r / R )  log(r/R) d?, (6.1) 

which is a special case of a class of metrics 

ds2 = -r-1/2(dz2 +dr2) - r d 4  d t  - rt+b dt2, 

where 9 is a harmonic function, attributed by Kinnersley (1974) to van Stockum. t i n  
(6.1) is a null coordinate. 

7. Singularities and behaviour at infinity 

We shall study singularities and behaviour at infinity mainly by means of the Riemann 
tensor, the components of which for the metric (2.1) are given in the Appendix. The 
reader is referred to the Appendix for all detailed calculations in this section. 

The interior and exterior metrics are differentiable any number of times, and the 
only possibilities of singularities are at r = 0 and r = CO. It is easy to form physical 
components of the Riemann tensor in the interior case, and these remain finite at r = 0 
(see Appendix). Moreover, as was remarked at the end of § 2, space is Euclidean at 
r = 0. Hence spacetime is regular throughout the interior. 
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For the exterior metrics with components (2.8)-(2.10) it is somewhat easier to 
consider the algebraic invariants of the Riemann tensor. We use four of these given in 
the Appendix. In all three cases (2.8)-(2.10) of the exterior metric, those invariants 
which do not vanish are equal to 

(k = 4  or 6), (7.1) 
r k ( a 2 R 2 - l )  

but for a constant factor. Hence these invariants are finite for r > R and tend to zero as 
r + cy), provided 

a2R2< 1. (7.2) 
If aR = 1, the invariants are constant. In this case there exists the extra Killing 

vector (3.2). In fact the spacetime is homogeneous, admitting a four-parameter simply 
transitive group of motions. It is isometric with a known metric originally discovered by 
Petrov (1962) and discussed by Debever (1965). The work in this paper provides a 
possible source for this vacuum metric. This case will be investigated further elsewhere. 

If a 2 R 2 >  1, the invariants tend to infinity with r. Moreover, the proper radial 
distance from r = R to r = cy) is finite. This suggests that the spacetime has a source at 
r = CO, in addition to the rotating dust in r < R. For this reason we confine attention to 
(7.2). 

If (7.2) is satisfied, the spacetime is globally regular and the invariants of the 
Riemann tensor tend to zero as r + cy), suggesting that there are no sources there. Hence 
we may take the source of this spacetime as an infinitely long rotating cylinder of dust, of 
everywhere finite density. 

8. Mass and angular momentum 

We take for m, the mass per unit z coordinate, and j ,  the angular momentum per unit z 
coordinate, 

where T ~ ,  6' are timelike and rotational Killing vectors respectively, ni is the unit normal 
to the spacelike surface of integration, d3v = (-4g)1'2 dz dr dq5 is the three-dimensional 
volume element, and the integration is to be carried out over the interior of the cylinder, 
i.e. over r < R (Hansen and Winicour 1975, Synge 1960). 

Because of (4.1), T~ and ti need further definition, and we start with the possibilities 

T i  = qsi, +sad, 

6' = q's: +dab, 
4, s, q', s'  being constants. By demanding that near the axis r = 0 the trajectories of ti 
shall be curves of q5 running from 0 to 277, namely the curves 

x3 = q5, 0 s q5 s 277, X I  = constant (i # 3), 

we have q f  = 1, s f  = 0. If we require T~ to be a unit vector on r = 0, then, since 
1T)2=gi jJT i k -  - -Lq2-2Mqs+Fs2,  
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we have sz = 1, because F = 1 and L, M vanish on the axis. To fix q, two choices are 
possible. We can take the trajectories of T~ to be those of the dust, in which case 
T~ = U = 86 so q = 0; or we can use the condition (Vishveshwara and Winicour 1977) 

which leads to q = -a, and the trajectories of 6' for points on the axis are those of locally 
non-rotating observers (see 0 3). We retain 4 unspecified for the time being and give it 
the values 0 and -a later. Thus we shall replace (8.3) and (8.4) by 

7' = 48; -!- 8 f ,  (8 .5 )  

6' = 8;. (8.6) 
For convenience we choose the hypersurface of integration as t = constant, so that 

the unit normal is 

(8.7) 2 2 -112 4 n , = ( l - a  r ) 8 , .  

The contravariant components of n' are 
2 2 -112 I  2 2 1/2 n ' = - a ( 1 - a  r ) & + ( l - a  r ) 8:. 

On the axis, n' = T' with q = -a, which is an argument in favour of this choice of q. 
Using 

T: = PU'U' = pSk (-Ma: + 8:) 

and (8 .5 ) ,  (8.6) and (8.7) we can now evaluate (8.1) and (8.2). We find 

(8.8) 

(8.9) 

2 2 112 2 2 1/2 m = ( l - $ 4 / a ) [ l - ( l - a  R ) ]+$qaR2(1-a R ) , 
2 2 112 2 2 112 j = $ a - ' [ l - ( l - a  R ) ]--faR2(1-a R ) . 

If aZR2<< 1, so that terms of order a4R4 in m and a5R6 in j may be neglected, these 
reduce to 

(8.10) 1 2  2 m = i a  R ,  
j = $a3R4 (8.11) 

which are precisely the Newtonian values for the mass and angular momentum per unit 
length of a rigidly rotating cylinder of dust with angular velocity a and radius R, units 
being chosen so that G = 1. We notice that q does not enter the expression (8.9) for the 
angular momentum, but does occur in the mass (8.8). Putting q = -a for the reason 
explained, we find that its presence makes little difference to the mass until aR gets 
large: for example, at the borderline between cases I and 11, when aR = h, the masses 
per unit z for 4 = 0 and q = -a are about 0.13 and 0.15 relativistic units respectively; 
but at the extreme limit of physical significance of case 111, namely aR = 1, we find that 
the corresponding figures are 1 and 5. 

In § 5 the exterior case I metric was reduced to the static form (5.2) which was similar 
to the Levi Civita form (5.4). The constant C in the latter is approximately twice the 
gravitational mass per unit z (Marder 1958) so we have, using (4.7), 

1 2 2  m - $ ~ = $ ( 1 - - 2 n ) - s a  R , 
agreeing with (8.10). 
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We notice that aR, the value of which determines the case the metric falls into, is 
related to the mass rather than the angular momentum. In fact it is possible to have a 
metric falling in the ultrarelativistic case I11 (aR > i) and yet have the angular momen- 
tum small (if a is large and R small). 

Introducing units of customary dimensions we may write (8.10) as 

Gmfc2 =ia2R2fc2.  

Case I11 (aR f c > 1) requires 

G m l c 2  > $, 

m being an approximation to the mass per unit length. It follows from this, as 
recognised by Vishveshwara and Winicour (1977), that the ultrarelativistic case could 
occur when the radius and density of the infinite cylinder were about the same as those 
at which horizons form in finite bodies. 

We summarise this section. The mass and angular momentum are given by (8.8) and 
(8.9). More than one definition of mass is possible, but for aR S i  (8.10) applies with 
good approximation. The ultrarelativistic case aR > 1 does not require high densities or 
angular momenta. 

9. Discussion and conclusion 

It has long been realised that van Stockum's spacetime can contain closed timelike lines. 
These occur in the exterior case I11 metric (2.10) where L is negative because the curve 

x 3  = 4, X I  =constant ( i  # 3), 

becomes timelike, and, assuming that we preserve (2.2), it is closed. Closed timelike 
lines are known in other relativistic metrics, e.g. the Godel and Kerr metrics, but one 
does not know in those cases whether the sources are made out of reasonable matter. 
What seems now quite clear from § §  7 and 8 of this paper is that closed timelike lines can 
occur in a globally regular metric whose source consists of realistic matter (i.e. dust). 

The remaining doubt, of course, is whether a cylinder of infinite length is plausible 
enough for physical conclusions to be drawn from a study of it. Undoubtedly the infinite 
length of the cylinder causes some strange effects, rotating or not. For example, though 
the spacetime tends to flatness at infinity, it is not globally Euclidean because the ratio of 
the circumference to the radius of large circles centred on the axis is not 2 ~ .  Further, 
test particles cannot escape from the gravitational field of the rod to infinity: this 
happens even with Newtonian infinite rods. Nevertheless, in some respects an infinite 
cylinder may be a model for a long finite one, and the possibility cannot be dismissed 
that a time machine might be associated with a long, but finite rotating system. 

Another result proved in this paper is that exterior cases I1 and I11 are not static. 
Case I is static in the sense that the metric can be diagonalised, but only at the cost of 
introducing a periodic time coordinate. 
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Appendix. The Riemann tensor 

The non-zero components of RIJkl for the metric (2.1) can be expressed in terms of the 
following. 

R~~~~ = $ H ” - $ H - ~ H ’ ~ ,  RI313 = :H-’H’L’, RI414 = -iH-lF’H’, 
R2323 = ;L” - :H-’H’L’ - $r-’L‘ + $r-’L(F’L’ + MI2), 

R2424 = -;F”+:H-1F’H’+$r-’F’-$r-2F(F’L‘+M’2), (‘41) 
R3434 = -aH-1(F’L’+M‘2), RI314 =+H-’H’M’, 
R2324 = 412/”-:H-’H’M‘-;r-’M’+ar-2M(F’L’+M’2), 

The dual Riemann tensor 
R * ! I k l  = $77 umnR 

mnkl 

has non-zero components expressible in terms of R*lZ34, R*13z3, R*1324, R*14 23,  
R*1424, R*2313, R*2314, R*2413, R*2414, which are easily obtained from (Al) .  

as follows. We choose differential forms 

8’=H1’2dz, 0 2 =  Hli2 dr,  d 3  = r d4,  O4 = -ar2 d d  + dt ,  

with the corresponding basis vectors 

e ;  = H S 1 ,  

so that metric (2.1) becomes 

For the interior r < R we can form the physical components of the Riemann tensor 

e; = r - la ;  +ar8:, e: =a:,  (‘42) 
-1/2 I  e ;  = H 82, -1 /2  I 

ds2 = - (e1)’ - (e2)’ - (e3)’ + (e4)’, 
and the physical or tetrad components of the Riemann tensor are 

k i  Rabcd = eLae’be dRLJki, 

RIJki denoting coordinate components. The latter are all finite at r = 0, as can be seen 
from (2.6) and (Al) .  From (A2) it is evident that the only danger of a singularity at r = 0 
comes from components in which one or two of a,  b, c, d are equal to 3. The situation is 
saved because components of RIJkl with one or two 3’s in them contain a factor r2.  Thus 
all components of Rabcd are finite at r = 0. 

We turn now to the vacuum exterior, r > R. Algebraic invariants of the Riemann 
tensor for vacuum spacetimes are (Weinberg 1972) 

(A31 R ~ ~ k l  
Ilk1 9 

R *;iklR kl i i ,  

RijkiR klmnRmnii, 

R *iikrR kimnRmnii. 

It turns out that for all three exterior cases (2.8)-(2.10) the mixed components of the 
Riemann tensor may be written in terms of 

h RlZ12 = Pyh, R1313=-P(1-a2R2)yh, R1314 = -aPy , 
R’414= -a2R2Pyh, R2323 = -a2R2Pyh, ~~~2~ = aPy h,  
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R~~~~ = - (1 - a2R 2 ) ~ y  h ,  R 3 4 3 4  = Py h ,  

where, for brevity, we have written P = a2 ea2Rz, y = r/R, h = 2 a 2 R 2  - 2. It is now easy 
to check that invariants (A3) and (A5) have the form (7.1). The invariants (A4) and 
(A6) are easily seen to vanish identically. 
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